Retardo mental, malformaciones congénitas y aberraciones cromosómicas subteloméricas crípticas

  • Máximo E. Drets Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Servicio Nacional de Clasificación Celular y Citometría de Flujo, Investigador Emérito
  • Federico F. Santiñaque Instituto de Investigaciones Biológicas Clemente Estable, Unidad Asociada de la Facultad de Ciencias, Programa de Desarrollo de Ciencias Básicas (PEDECIBA), Becario
Palabras clave: RETARDO MENTAL Y MALFORMACIONES CONGÉNITAS, ABERRACIONES CROMOSÓMICAS CRÍPTICAS

Resumen

Los recientes progresos tecnológicos ocurridos en citogenética molecular han permitido la detección de numerosas minúsculas aberraciones en la región cromosómica contigua al telómero o segmento subtelomérico, que han sido relacionadas con diversos cuadros de retardo mental, malformaciones congénitas y otros síndromes de interés médico. Investigaciones previas, llevadas a cabo mediante exploración microfotométrica y análisis gráfico computacional del subtelómero, revelaron diferentes patrones de distribución de las densidades de la cromatina y la existencia de intercambios sumamente pequeños entre cromátidas hermanas en dicho segmento cromosómico. La detección de aberraciones crípticas sindromáticas, el elevado número de intercambios cromosómicos y las observaciones microscópicas sobre la estructura subtelomérica sugieren que reflejan la gran actividad genómica y la complejidad estructural prevalente en la región. En la presente revisión se describen brevemente varios síndromes cromosómicos subteloméricos, así como la estructura molecular y citológica de la región subtelomérica y las principales funciones del segmento cromosómico terminal a fin de brindar un panorama general sobre esta área de investigaciones en rápido crecimiento de considerable significación biomédica.

Citas

1) Lejeune J, Gauthier M, Turpin R. Étude des chromosomes somatiques de neuf enfants mongoliens. Compt Rend Acad Sci, Paris, 1959; 248: 1721-2.
2) Sutherland GR. Fragile sites on human chromosomes: demonstration of their dependence on the type of tissue culture medium. Science 1977; 197: 265-6.
3) Sutton VR, Coveler KJ, Lalani SR, Kashork CD, Shaffer LG. Subtelomeric FISH uncovers trisomy 14p32: lessons for imprinted regions, cryptic rearrangements and variant acrocentric short arms. Am J Med Genet 2002; 112: 23-7.
4) Borck G, Rio M, Sanlaville D, Redon R, Molinari F, Bacq D, et al. Genome-wide screening using automated fluorescent genotyping to detect cryptic cytogenetic abnormalities in children with idiopathic syndromic mental retardation Clin Genet 2004; 66: 122-7.
5) Fan YS, Zhang Y, Speevak M, Farrell S, Jung JH, Siu VM. Detection of submicroscopic aberrations in patients with unexplained mental retardation by fluorescence in situ hybridization using multiple subtelomeric probes. Genet Med 2001; 3: 416-21.
6) Engelen JJ, Marcelis C, Herbergs J, Weber J, Alofs M, Albrechts JC, et al. Mosaic telomere (2;14) association in a child with motor delay. Am J Med Genet 2000; 92: 18-21.
7) Riegel M, Baumer A, Jamar M, Delbecque K, Herens C, Verloes A, et al. Submicroscopic terminal deletions and duplications in retarded patients with unclassified malformation syndromes. Hum Genet 2001; 109: 286-94.
8) Patsalis PC, Evangelidou P, Charalambous S, Sismani C. Fluorescence in situ hybridization characterization of apparently balanced translocation reveals cryptic complex chromosomal rearrangements with unexpected level of complexity. Eur J Hum Genet 2004; 12: 647-53.
9) Kriek M, White SJ, Bouma MC, Dauwerse HG, Hansson KB, Nijhuis JV, et al. Genomic imbalances in mental retardation. J Med Genet 2004; 41: 249-55.
10) Baker E, Hinton L, Callen DF, Altree M, Dobbie A, Eyre HJ, et al. Study of 250 children with idiopathic mental retardation reveals nine cryptic and diverse subtelomeric chromosome anomalies. Am J Med Genet 2002; 107: 285-93.
11) Bocian E, Helias-Rodzewicz Z, Suchenek K, Obersztyn E, Kutkowska-Kazmierczak A, Stankiewicz P, et al. Subtelomeric rearrangements: results from FISH studies in 84 families with idiophatic mental retardation. Med Sci Monit 2004; 10: 143-51.
12) de-Vries BB, White SM, Knight SJ, Regan R, Homfray T, Young ID, et al. Clinical studies on submicroscopic subtelomeric rearrangements: a checklist. J Med Genet 2001; 38: 145-50.
13) Novelli A, Ceccarini C, Bernardini L, Zuccarello D, Caputo V, Digilio MC, et al. High frequency of subtelomeric rearrangements in a cohort of 92 patients with severe mental retardation and dysmorphism. Clin Genet 2004; 66: 30-8.
14) Roberts AE, Cox GF, Kimonis V, Lamb A, Irons M. Clinical presentation of 13 patients with subtelomeric rearrangements and a review of the literature. Am J Med Genet 2004; 128: 352-63.
15) Walter S, Sandig K, Hinkel GK, Mitulla B, Ounap K, Sims G, et al. Subtelomere FISH in 50 children with mental retardation and minor anomalies, identified by a checklist, detects 10 rearrangements including a de novo balanced translocation of chromosomes 17p13.3 and 20q13.33. Am J Med Genet 2004; 128: 364-73.
16) Bartsch O, Hinkel GK, Petersen MB, Konig U, Bugge M, Mikkelsen M, et al. A large family with subtelomeric translocation t(18;21;(q23;q22.1; and molecular breakpoint in the Down syndrome critical region. Hum Genet 1997; 100: 669-75.
17) Bonaglia MC, Giorda R, Borgatti R, Felisari G, Gagliardi C, Selicorni A, et al. Disruption of the ProSAP2 gene in a t(12;22)(q24.1;q13.3) is associated with the 22q13.3 deletion syndrome. Am J Hum Genet 2001; 69: 261-8.
18) Brown J, Horsley SW, Jung C, Saracoglu K, Janssen B, Brough M, et al. Identification of a subtle t(16;19;(p13.3; p13.3) in an infant with multiple congenital abnormalities using a 12-colour multiplex FISH telomere assay, M-TEL. Eur J Hum Genet 2000; 8: 903-10.
19) Cargile CB, Goh DL, Goodman BK, Chen XN, Korenberg JR, Semenza GL, et al. Molecular cytogenetic characterization of a subtle interstitial del(3)(p25.3p26.2) in a patient with deletion 3p syndrome. Am J Med Genet 2002; 109: 133-8.
20) Cotter PD, Kaffe S, Li L, Gershin IF, Hirschhorn K. Loss of subtelomeric sequence associated with a terminal inversion duplication of the short arm of chromosome 4. Am J Med Genet 2001; 102: 76-80.
21) de-Vries BB, Lees M, Knight SJ, Regan R, Corney D, Flint J, et al. Submicroscopic 8pter deletion, mild mental retardation, and behavioral problems caused by a familial t(8;20)(p23;p13) Am J Med Genet 2001; 99: 314-9.
22) Giardino D, Finelli P, Gottardi G, De-Canal G, Della-Monica M, Lonardo F, et al. Narrowing the candidate region of Albright hereditary osteodytrophy síndrome by deletion mapping in a patient with unbalanced cryptic translocation t(2;6)(q37.3;q26). Am J Med Genet 2003; 122: 261-5.
23) Holinski-Feder E, Reyniers E, Uhrig S, Golla A, Wauters J, Kroisel P, et al. Familial mental retardation syndrome ATR-16 due to an inherited cryptic subtelomeric translocation, t(3;16)(q29;p13.3);. Am J Hum Genet 2000; 66: 16-25.
24) Horn D, Neitzel H, Tonnies H, Kalscheuer V, Kunze J, Hinkel GK, et al. Familial MCA/MR syndrome due to inherited submicroscopic translocation t(18;21)(q2.11q21.3) with breakpoint at the Down syndrome crtical region. Am J Med Genet 2003 117: 236-44.
25) Horsley SW, Knight SJ, Nixon J, Huson S, Fitchett M, Boone RA, et al. Del(18p) shown to be a cryptic translocation using a multiprobe FISH assay for subtelomeric chromosome rearrangements. J Med Genet 1998; 35: 722-6.
26) Jenderny J, Poetsch M, Hoeltzenbein M, Friedrich U, Jauch A. Detection of a concomitant distal deletion in an inverted duplication of chromosome 3. Is there an overall mechanism for the origin of such duplications/deficiencies? Eur J Hum Genet 1998; 6: 439-44.
27) Keller K, Williams C, Wharton P, Paulk M, Bent-Williams A, Gray B, et al. Routine cytogenetic and FISH studies for 17p11/15q11 duplications and subtelomeric rearrangements studies in children with autism spectrum disorders. Am J Med Genet 2003; 117: 105-11.
28) Kleefstra T, van-de-Zande G, Merkx G, Mieloo H, Hoovers JM, Smeets D. Identification of an unbalanced cryptic translocation between the chromosomes 8 and 13 in two sisters with mild mental retardation accompanied by mild dysmorphic features. Eur J Hum Genet 2000; 8: 637-40.
29) Leube B, Majewski F, Drechsler M, Royer-Pokora B. Unbalanced cryptic translocation der(14)t(9;14)(q34.3; q32.33) identified by subtelomeric FISH. Clin Dysmorphol 2003; 12: 261-5.
30) Lorda-Sánchez I, López-Pajares I, Roche MC, Sanz R, Rodríguez-De-Alba M, González-González MC, et al. Cryptic 6q subtelomeric deletion associated with a paracentric inversion in a mildly retarded child. Am J Med Genet 2000; 95: 336-8.
31) Precht KS, Lese CM, Spiro RP, Huttenlocher PR, Johnston KM, Baker JC, et al. Two 22q telomere deletions serendipituosly detected by FISH. J Med Genet 1998; 35: 939-42.
32) Quigley DI, Kaiser-Rogers K, Aylsworth AS, Rao KW. Submicroscopic deletion 9(34.3) and duplication 19(p13.3): identified by subtelomere FISH probes. Am J Med Genet 2004; 125: 67-72.
33) Rauch A, Beese M, Mayatepek E, Dorr HG, Wenzel D, Reis A, et al. A novel 5q35.3 subtelomeric deletion syndrome. Am J Med Genet 2003; 121: 1-8.
34) Reddy KS, Fugate JK. A half cryptic derivative der 18;t(5;18); pat identified by M-FISH and subtelomere probes: clinical findings and review of subtelomeric rearrangements. Clin Genet 1999; 56: 328-32.
35) Schultz LN, Schmidt P, Tabor A, Bryndorf T, Christesen B, Ludsteen C. Cryptic familial t11;18;(q25;q23) incidentally detected by interphase FISH. Clin Genet 2001; 59: 279-83.
36) Souter VL, Glass IA, Chapman DB, Raff ML, Parisi MA, Opheim KE, et al. Multiple fetal anomalies associated with subtle subtelomeric chromosomal rearrangements. Ultrasound Obstet Gynecol 2003; 21: 609-15.
37) Speleman F, Callens B, Logghe K, Van-Roy N, Horsley SW, Jauch A, et al. Subtelomeric familial translocation t(2;7;(q37;q35; leading to partial trisomy 7q35®qter: molecular cytogenetic analysis and clinical phenotype in two generations. Am J Med Genet 2000; 93: 349-54.
38) van-Deutekom JC, Bakker E, Lemmers RJ, Van Der Wielen MJR, Bik E, Hofker MH, et al. Evidence for subtelomeric exchange of 3.3 kb tandemly repeated units between chromosomes 4q35 and 10q26: implications for genetic counselling and etiology of FSHD1. Hum Mol Genet 1996; 5: 1997-2003.
39) Velagaleti GV, Jalal SM, Michaelis RC, Rowe TF, Nichols JR, Lockhart LH. Molecular cytogenetic characterization of a de novo unbalanced translocation leading to trisoomy 17q25®qter and monosomy 18p11.3®pter in a girl with dysmorphic features. Clin Dysmorphol 2003; 12: 29-33.
40) Warburton P, Mohammed S, Ogilvie CM. Detection of submicroscopic subtelomeric chromosome translocations: A new case study. Am J Med Genet 2000; 91: 51-5.
41) Wong ACC, Ning Y, Flint J, Clark K, Dumanski JP, Ledbetter DH, et al. Molecular characterization of a 130-kb terminal microdeletion at 22 q in a child with mild mental retardation. Am J Hum Genet 1997; 60: 113-20.
42) Sekelsky J, Hawley RS. The bond between sisters. Cell 1995; 83: 157-60.
43) Therman E, Susman, M. Human Chromosomes Structure, Behavior and Effects. Berlín:Springer, 3rd. ed 1993; 1-376; Cromosomas Humanos. Estructura, Comportamiento y Efectos. Brasil: Soc Bras Gen, ed. (Traducción: Drets, M.E.) 1996; 1-383.
44) Holmquist GP. Chromosome bands, their chromatin flavors and their functional features. Am J Hum Genet 1992; 51: 17-37.
45) Drets ME. Una saga citogenética: El descubrimiento de los métodos de bandeo cromosómico. Significado y proyección bio-médica. Rev Med Uruguay 2002; 18: 107-21.
46) Verma RS. Molecular biology of heterochromatin. In: The genome. New York: VCH Publishers, 1990: 43-72.
47) Holmquist GP, Caston LA. Replication time of interspersed repetitive DNA sequences in hamsters. Bioch Bioph Acta 1986; 868: 164-47.
48) Korenberg JR, Rykowski MC. Human genome organization: Alu, Lines and the molecular structure of metaphase chromosome bands. Cell 1988; 53: 391-400.
49) Vizard DL, Rosenberg NL. Terminal replication of an interspersed repeated sequence of mouse DNA. Bioch Bioph Acta 1984; 782: 402-7.
50) Kornberg RD, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosomes. Cell 1999; 98: 285-94.
51) Wolffe A. Chromatin structure. In: Chromatin. Structure and Function. 3rd ed. San Diego: Academic Press, 1998: 7-172.
52) Saitoh Y, Laemmli UK. Metaphase chromosome structure: bands arise from a differential folding path of the highly AT-rich scaffold. Cell 1994; 76: 609-22.
53) Muller HJ. The remaking of chromosomes. Collecting Net 1938; 8: 182-95.
54) Klobutcher LA, Swanton MT, Donini P, Prescott DM. All gene-sized DNA molecules in four species of hypotrichs have the same terminal sequence and an unusual 3' terminus. Proc Natl Acad Sci 1981; 78: 3015-9.
55) Oka Y, Shiota S, Nakai S, Nishida Y, Okubo S. Inverted terminal repeat sequence in the macromolecular DNA of Stylonychia pustulata. Gene 1980; 10: 301-6.
56) Ostler EL, Wallis CV, Aboalchamat B, Faragher RG. Telomerase and the cellular lifespan: implications of the aging process. J Pediatr Endocrinol Metab 2000; 13: 1467-76.
57) Pardue ML, DeBarysche PG. Telomeres and telomerase: more than the end of the line. Chromosoma 1999; 108: 73-82.
58) Henderson E. Telomere DNA structure. In: Blackburn EH, Greider CW, eds. Telomeres. New York: Cold Spring Harbor Lab Press, 1995: 11-34.
59) Dutrillaux B. Nouveau système de marquage chromosomique: Les bandes T. Chromosoma 1973; 41: 395-402.
60) Ludeña P, Sentis C, De-Cabo F, Velázquez M, Fernández-Piqueras J. Visualization of R-bands in human metaphase chromosomes by the restriction endonuclease MseI. Cytogenet Cell Genet 1991; 57: 82-6.
61) Allen TD, Jack EM, Harrison CJ. The three dimensional structure of human metaphase chromosomes determined by scanning electron microscopy. In: Adolph KW, ed. Chromosomes and chromatin. Florida: CRC Press, 1988: 51-72.
62) Steiner S, Shay JW, Wright WE. Modification of subtelomeric DNA. Mol Cell Biol 2004; 24: 4571-80.
63) Blackburn EH, Gall JG. A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol 1978; 120: 33-53.
64) Blackburn EH, Greider CW, eds. Telomeres. New York: Cold Spring Harbor Lab Press, 1995: 1-396.
65) Zakian VA. Telomeres: beginning to understand the end. Science 1995; 270: 1601-7.
66) Moyzis RK, Buckinham JM, Cram LS, Dani M, Deaven LL, Jones MD, et al. A highly conserved repetitive DNA sequence (TTAGGG)n present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 1988; 85: 6622-6.
67) Meyne J, Ratliff Rl, Moyzis RK. Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc Natl Acad Sci USA 1989; 89: 7049-53.
68) Meyne J, Ratliff RL, Buckingham JM, Jones MD, Wilson JS, Moyzis RK. The human telomere. In: Fredga K, Kihlman BA, Bennet MD, eds. Chromosomes Today. London: Unwin Hyman, 1990: 75-80.
69) Makarov VL, Hirose Y, Langmore JP. Long G Tails at Both Ends of Human Chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 1997; 88: 657-66.
70) Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, et al. Mammalian telomeres end in a large duplex loop. Cell 1999; 97: 503-14.
71) Nikitina T, Woodcock CL. Closed chromatin loops at the ends of chromosomes. J Cell Biol 2004; 166: 161-5.
72) Flint J, Bates GP, Clark K, Dorman A, Willingham D, Roe BA, et al. Sequence comparison of human and yeast telomeres identifies structurally distinct subtelomeric domains. Hum Mol Genet 1997; 6: 1305-13.
73) Riethman H, Ambrosini A, Castaneda C, Finklestein J, Hu XL, Mudunuri U, et al. Mapping and initial analysis of human subtelomeric sequence assemblies. Genome Res 2004; 14: 18-28.
74) Der-Sarkissian H, Vergnaud G, Borde YM, Thomas G, Londono-Vallejo JA. Segmental polymorphism in the proterminal regions of a subset of human chromosomes. Genome Res 2002; 12: 1673-8.
75) Mefford HC, Trask BJ. The complex structure and dynamic evolution of human subtelomeres. Nat Rev Genet 2002; 3: 91-102.
76) Blackburn EH. Switching and signaling at the telomere. Cell 2001; 106: 661-73.
77) de-Lange T, Shiue L, Myers RM, Cox DR, Naylor SL, Killery AM, et al. Structure and variability of human chromosome ends. Mol Cell Biol 1990; 10: 518-27.
78) Chong L, van-Steensel B, Broccoli D, Erdjument-Bromage H, Hanish J, Tempst P, et al. A human telomeric protein. Science 1995; 270: 1663-7.
79) Stansel R, de-Lange T, Griffith JD. T-loop assembly in vitro involves binding of TRF2 near the 3' telomeric overhang. EMBO 2001; 20: 5532-40.
80) Yoshimura SH, Maruyama H, Ishikawa F, Ohki R, Takeyasu K. Molecular mechanisms of DNA end-loop formation by TRF2. Genes Cells 2004; 9: 205-18.
81) Colleaux L, Rio M, Heuertz S, Moindrault S, Turleau C, Ozilou C, et al. A novel automated strategy for screening cryptic telomeric rearrangements in children with idiopathic mental retardation. Eur J Hum Genet 2001; 9: 319-27.
82) Slavotinek A, Rosenberg M, Knight S, Gaunt L, Fergusson W, Killoran C, et al. Screening for submicroscopic chromosome rearrangements in children with idiopathic mental retardation using microsatellite markers for the chromosome telomeres. J Med Genet 1999; 36: 405-11.
83) Ness GO, Lybaek H, Houge G. Usefulness of high resolution comparative genomic hybridization (CGH) for detecting and characterizing constitutional chromosome abnormalities. Am J Med Genet 2002; 113: 125-36.
84) Jalal SM, Harwood AR, Sekhon GS, Pham-Lorentz C, Ketterling RP, Babovic-Vuksanovic D, et al. Utility of subtelomeric fluorescent DNA probes for detection of chromosome anomalies in 425 patients. Genet Med 2003; 5: 28-34.
85) Pinkel D, Sstraume T, Gray JW. Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 1986; 83: 2934-8.
86) Ried T, Schröck E, Ning Y, Wienberg J. Chromosome painting: a useful art. Hum Mol Genet 1998; 10: 1619-26.
87) Knight SJI, Flint J. Perfect endings: a review of subtelomeric probes and their use in clinical diagnosis. J Med Genet 2000; 37: 401-9.
88) Brown J, Saracoglu K, Uhrig S, Speicher MR, Eils R, Kearney L. Subtelomeric chromosome rearrangements are detected using an innovative 12-color FISH assay (M-TEL). Nat Med 2001; 4: 497-501.
89) Graakjaer J, Pascoe L, Der-Sarkisian H, Thomas G, Kolvraa S, Christensen K, et al. The relative lengths of individual telomeres are defined in the zigote and strictly maintained during life. Aging Cell 2004; 3: 97-102.
90) McEachern MJ, Krauskopf A, Blackburn EH. Telomeres and their control. Annu Rev Genet 2000; 34: 331-58.
91) Lingner J, Cooper JP, Cech TR. Telomerasa and DNA end replication: no longer a lagging strand problem? Science 1995; 269: 1533-4.
92) Harley CB. Telomeres and Aging. In: Blackburn EH, Greider CW, eds. Telomeres. New York: Cold Spring Harbor Lab Press, 1995: 247-63.
93) Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965; 37: 614-36.
94) Cong Y, Wright WE, Shay JW. Human telomerase and its regulation. Microbiol Mol Biol Rev 2002; 66: 407-25.
95) Blasco MA, Gasser SM, Lingner J. Telomeres and telomerase. Genes Dev 1999; 13(18): 2353-9.
96) Greider CW. Telomerase activity, cell proliferation, and cancer. Proc Natl Acad Sci USA 1998; 95: 90-2.
97) Hiyama E, Hiyama K. Clinical utility of telomerase in cancer. Oncogene 2002; 21: 643-9.
98) Morin GB. Telomere Integrity and Cancer. J Nat Cancer Inst 1996; 88(16): 1095-6.
99) Shay JW, Wright WE. Aging. When do telomeres matter? Science 2001; 291: 839-40.
100) Drets ME, Drets GA, Queirolo PJ, Monteverde FJ. Computer graphics as a tool in cytogenetic research and education. Comp Appl Biosc (CABIOS) 1995; 11: 463-8.
101) Drets ME, Obe G, Monteverde FJ, Folle GA, Medina II, De-Galvez MG, et al. Computerized graphic and light microscope analyses of T-banded chromosome segments of Chinese hamster ovary cells and human lymphocytes. Biol Zentbl 1992; 111: 204-14.
102) Drets ME, Mendizábal M. The underlying structure of the subtelomeric segments detected by microphotometrical scanning and graphic image analysis. Fundamental and Molecular Mechanisms of Mutagenesis. Mut Res 1998; 404: 13-6.
103) Obe G, Pfeiffer P, Savage JRK, Johannes C, Goedecke W, Jeppesen P, AT, et al. Chromosomal Aberrations: Formation, Identification and Distribution. Mutat Res 2002; 504: 17-36.
104) Drets, ME. Cytological indications on the complex structure of the subtelomeric region. Cytogen Genome Res Chromosomal Aberrations 2004; 104: 137-41.
105) Drets ME, Obe G, Folle GA, Medina II, De-Galvez MG, Duarte, JE, et al. Appearance of "holes" in subtelomeric regions of human and Chinese hamster ovary cell chromosomes due to prolonged incubation in T-banding buffer followed by Giemsa staining. Braz J Genet 1992; 15: 927-33.
106) Drets ME, Mendizábal M, Boccardo EM, Bonomi R. Further analyses of subtelomeric and paracentric holes induced in human and Chinese hamster ovary cell chromosomes. Biol Zentbl 1995; 114: 329-38.
107) Bekaert S, Koll S, Thas O, Van-Oostveldt P. Comparing telomere length of sister chromatids in human lymphocytes using three-dimensional confocal microscopy. Cytometry 2002; 48: 34-44.
108) Badge RM, Yardley J, Jeffreys AJ, Armour JA. Crossover breakpoint mapping identifies a subtelomeric hotspot for male meiotic recombination. Hum Mol Genet 2000; 9: 1239-44.
109) Cornforth MN, Eberle RL. Termini of human chromosomes display elevated rates of mitotic recombination. Mutagenesis 2001; 16: 85-9.
110) Pettenati MJ, Jackle B, Bobby P, Stewart W, Von-Kap-Herr C, Mowrey P, et al. Unexpected retention and concomitant loss of subtelomeric regions in balanced chromosomes anomalies by FISH. Am J Med Genet 2002; 111: 48-53.
111) Mondello C, Pirzio L, Azzalin CM, Giolotto E. Instability of interstitial telomeric sequences in the human genome. Genomics 2000; 68: 111-7.
112) Odero MD, Carlson K, Lahortiga I, Calasanz MJ, Rowley JD. Molecular cytogenetic characterization of breakpoints in 19 patients with hematologic malignancies and 12p unbalanced translocations. Cancer Genet Cytogenet 2003; 142: 115-9.
113) Penas EM, Cools J, Algenstaedt P, Hinz K, Seeger D, Schafhausen P, et al. A novel cryptic translocation t (12;17) (p13;p12-p13) in a secondary acute myeloid leukemia results in a fusion of the ETV6 gene and the antisense strand of the PER1 gene. Genes Chromosomes Cancer 2003; 37: 79-83.
114) Bayani J, Zielenska M, Pandita A, Al-Romaih K, Karaskova J, Harrison K, et al. Spectral karyotyping identifies recurrent complex rearrangements of chromosomes 8, 17, and 20 in osteosarcomas. Genes Chromosomes Cancer 2003; 36: 7-16.
115) Babovic-Vuksanovic D, Jenkins SC, Ensenauer R, Newman DC, Jalal SM. Subtelomeric deletion of 18p in an adult with paranoid schizophrenia and mental retardation. Am J Med Genet 2004; 124: 318-22.
116) Pickard BS, Hollox EJ, Malloy MP, Porteous DJ, Blackwood DH, Armour JA, et al. A 4q35.2 subtelomeric deletion identified in a screen of patients with co-morbid psychiatric illness and mental retardation. BMC Med Genet 2004; 5: 21.
117) Bruyere H, Rajcan-Separovic E, Doyle J, Pantzar T, Langlois S. Familial cryptic translocation (2;17) ascertained through recurrent spontaneous abortions. Am J Med Genet 2003; 123: 285-9.
118) Borg I, Squire M, Menzel C, Stout K, Morgan D, Willatt L, et al. A cryptic deletion of 2q35 including part of the PAX3 gene detected by breakpoint mapping in a child with autism and a de novo 2;8 translocation. J Med Genet 2002; 39: 391-9.
119) Manning MA, Cassidy SB, Clericuzio C, Cherry AM, Schwartz S, Hudgins L, et al. Terminal 2q deletion syndrome: a newly recognized cause of speech and language disability in the autism spectrum. Pediatrics 2004; 114: 451-7.
120) Wolff DJ, Clifton K, Karr C, Charles J. Pilot assessment of the subtelomeric regions of children with autism: detection of a 2q deletion. Genet Med 2002; 4: 10-4.
Publicado
2005-06-30
Cómo citar
1.
Drets ME, Santiñaque FF. Retardo mental, malformaciones congénitas y aberraciones cromosómicas subteloméricas crípticas. Rev. Méd. Urug. [Internet]. 30 de junio de 2005 [citado 22 de diciembre de 2024];21(2):93-106. Disponible en: https://www2.rmu.org.uy/ojsrmu311/index.php/rmu/article/view/813
Sección
Trabajos de Revisión o Actualización y Puestas al día